1.5 CLASIFICACIÓN DE REDES
CLASIFICACIÓN DE REDES
1.5.1. Por su forma de transmisión
Guiados
· Cable par trenzado: cable de par trenzado es un tipo de conexión que tiene dos conductores eléctricos aislados y entrelazados para anular las interferencias de fuentes externas y diafonía de los cables adyacentes. Tiene una importancia al interconectar computadores en una red lan, uso en cual casa para tener una conexión de internet desde un modem hacía la computadora.
· Cable coaxial: es un cable utilizado para transportar señales eléctricas de alta frecuencia que posee dos conductores concéntricos, uno central, llamado núcleo, encargado de llevar la información, y uno exterior, de aspecto tubular, llamado malla, blindaje o trenza, que sirve como referencia de tierra y retorno de las corrientes. Entre ambos se encuentra una capa aislante llamada dieléctrico, de cuyas características dependerá principalmente la calidad del cable. Todo el conjunto suele estar protegido por una cubierta aislante, el cable coaxial se utiliza principalmente para fines de audio y visuales.
· Cable de fibra óptica: es un medio de transmisión, empleado habitualmente en redes de datos y telecomunicaciones, consiste en un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede provenir de un láser o un diodo led.
En este pueden existir direccional y omnidireccional, pero en sí, se clasifican en 3 tipos según su rango de frecuencia.
· Radiofrecuencia u ondas de radio: aunque se emplea la palabra radio, las transmisiones de televisión, radio, radar y telefonía móvil están incluidas en esta clase de emisiones de radiofrecuencia. Otros usos son audio, vídeo, radionavegación, servicios de emergencia y transmisión de datos por radio digital; tanto en el ámbito civil como militar. También son usadas por los radioaficionados.
· Microondas: las microondas son usadas en radiodifusión, ya que estas pasan fácilmente a través de la atmósfera con menos interferencia que otras longitudes de onda mayores. También hay más ancho de banda en el espectro de microondas que en el resto del espectro de radio. Usualmente, las microondas son usadas en programas informativos de televisión para transmitir una señal desde una localización remota a una estación de televisión mediante una camioneta especialmente equipada. Protocolos 802.11g y b también usan microondas en la banda ISM, aunque la especificación 802.11a usa una banda ISM en el rango de los 5 GHz. La televisión por cable y el acceso a Internet vía cable coaxial usan algunas de las más bajas frecuencias de microondas. Algunas redes de telefonía celular también usan bajas frecuencias de microondas.
· Luz:
o Infrarroja: Un uso muy común es el que hacen los mandos a distancia (ó tele comandos) que generalmente utilizan los infrarrojos en vez de ondas de radio ya que no interfieren con otras señales como las señales de televisión. Los infrarrojos también se utilizan para comunicar a corta distancia los ordenadores con sus periféricos. Los aparatos que utilizan este tipo de comunicación cumplen generalmente un estándar publicado por Infrared Data Association.
o Láser: Conexiones LAN-to-LAN en Campus con velocidades de Fast Ethernet o Gigabit Ethernet, conexiones LAN-to-LAN en una ciudad. ejemplo, Red de área metropolitana. para cruzar una vía pública u otras barreras imposibles para emisor y receptor, rápido acceso a servicios de banda ancha de alta velocidad en las redes de fibra óptica, instalación de redes Temporales (para eventos o para otros fines), restablecer la conexión de alta velocidad rápidamente (en caso de desastres), como una alternativa o complemento de actualización a las actuales tecnologías inalámbricas, como complemento de seguridad para las importantes conexiones de fibra óptica, para las comunicaciones entre naves espaciales, incluidos los elementos de una constelación de satélites.
1.5.2. Por su forma de conmutación
1.- Conmutación de circuitos
En la conmutación de circuitos, el camino (llamado “circuito”) entre los extremos del proceso de comunicación se mantiene de forma permanente mientras dura la comunicación, de forma que es posible mantener un flujo continuo de información entre dichos extremos. Este es el caso de la telefonía convencional.
Características
Los enlaces que utilizan conmutación por circuito presentan un retraso en el inicio de la comunicación. Se necesita un tiempo para realizar la conexión, lo que conlleva un retraso en la transmisión de la información, además existe un acaparamiento de recursos debido al no aprovechamiento del circuito en los instantes de tiempo en que no hay transmisión entre las partes. Se desperdicia ancho de banda mientras las partes no están comunicándose.
Una vez establecida la ruta de comunicación, el circuito no cambia por lo que es imposible reajustar la ruta de comunicación en cada momento para lograr el menor costo entre los nodos, es decir, una vez que se ha establecido el circuito, no se aprovechan los posibles caminos alternativos con menor coste que puedan surgir durante la sesión.
En la conmutación de circuitos la transmisión no se realiza en tiempo real, siendo adecuado para comunicación de voz y video, en la misma los nodos que intervienen en la comunicación disponen en exclusiva del circuito establecido mientras dura la sesión, no hay contención, una vez que se ha establecido el circuito las partes pueden comunicarse a la máxima velocidad que permita el medio, sin compartir el ancho de banda ni el tiempo de uso.
El circuito es fijo, una vez establecido el circuito no hay pérdidas de tiempo calculando y tomando decisiones de encaminamiento en los nodos intermedios. Cada nodo intermedio tiene una sola ruta para los paquetes entrantes y salientes que pertenecen a una sesión específica, este tipo de conmutación simplifica la gestión de los nodos intermedios una vez que se ha establecido el circuito físico, no hay que tomar más decisiones para encaminar los datos entre el origen y el destino.
Uno de los peores inconvenientes de la conmutación de circuito es la poca tolerancia a fallos. Si un nodo intermedio falla, todo el circuito se viene abajo. Hay que volver a establecer conexiones desde el principio.
2.- Conmutación de paquetes
La conmutación de paquetes se trata del procedimiento mediante el cual, cuando un nodo quiere enviar información a otro lo divide en paquetes, todos del mismo tamaño, los cuales contienen la dirección del nodo destino, en este caso, no existe un circuito permanente entre los extremos y, la red, simplemente, se dedica a encaminar paquete a paquete la información entre los usuarios.
Características
Es la conmutación más usadas, en caso de error en un paquete solo se reenvía ese paquete, sin afectar a los demás que llegaron sin error, se limita el tamaño de los paquetes a enviar de manera que ningún usuario pueda monopolizar una línea de transmisión durante mucho tiempo, por lo que las redes de conmutación de paquetes pueden manejar tráfico interactivo, esto hace que aumente la aumenta la flexibilidad y rentabilidad de la red.
En caso de algún fallo se puede alterar sobre la marcha el camino seguido por una comunicación así, un nodo puede seleccionar de su cola de paquetes en espera de ser transmitidos aquellos que tienen mayor prioridad.
Los equipos de conmutación utilizados son de mayor complejidad ya que necesitan mayor velocidad y capacidad de cálculo para determinar la ruta adecuada en cada paquete, también es capaz de retrasmitir paquetes en caso de que un paquete tarde demasiado en llegar a su destino, en este caso el receptor no envía el acuse de recibo al emisor, por lo cual el receptor volverá a retransmitir los últimos paquetes del cual no recibió el acuse, pudiendo haber redundancia de datos.
3.- Conmutación de mensajes
Es el tipo de conmutación menos utilizadas, para transmitir un mensaje a un receptor, el emisor debe enviar primero el mensaje completo a un nodo intermedio el cual lo encola en la cola donde almacena los mensajes que le son enviados por otros nodos. Luego, cuando llega su turno, lo reenviará a otro y éste a otro y así las veces que sean necesarias antes de llegar al receptor. El mensaje deberá ser almacenado por completo y de forma temporal en el nodo intermedio antes de poder ser reenviado al siguiente, por lo que los nodos temporales deben tener una gran capacidad de almacenamiento.
Características
La conmutación de mensaje presenta un mejor aprovechamiento del canal de transmisión comparado con la conmutación de circuito y por paquetes, en este caso se unen mensajes de orígenes diferentes que van hacia un mismo destino, y viceversa, todos al mismo tiempo sin necesidad de esperar a que se libere el circuito, esto provoca que el canal se libera mucho antes que, en la conmutación de circuitos, lo que reduce el tiempo de espera necesario para que otro remitente envíe mensajes.
El tamaño del mensaje es mayor en la conmutación de mensaje ya que se añade información extra de encaminamiento (cabecera del mensaje) a la comunicación, lo que implica disminución del rendimiento del canal y una mayor complejidad en los nodos intermedios puesto que tienen que analizar además del mensaje la cabecera de cada uno para tomar decisiones y examinar los datos del mensaje para comprobar que se ha recibido sin errores, debido a esto es necesario contar con capacidad de almacenamiento para poder verificar y retransmitir el mensaje completo, en caso de que la capacidad de almacenamiento se agote y llegue un nuevo mensaje, no puede ser almacenado y se perderá definitivamente.
1.5.3. POR SU ALCANCE GEOGRÁFICO
1. Red de área personal(PAN)
Hablamos de una red informática de pocos metros, algo parecido a la distancia que necesita el Bluetooth del móvil para intercambiar datos. Son las más básicas y sirven para espacios reducidos, por ejemplo, si trabajas en un local de una sola planta con un par de ordenadores.
Las redes PAN pueden serte útiles si vas a conectar pocos dispositivos que no estén muy lejos entre sí. La opción más habitual, sin embargo, para aumentar el radio de cobertura y para evitar la instalación de cablea estructurado, suele ser la compra de un router y la instalación de una red de área local inalámbrica.
2. Red de área local (LAN).
file0001407535981Es la que todos conocemos y la que suele instalarse en la mayoría de las empresas, tanto si se trata de un edificio completo como de un local. Permite conectar ordenadores, impresoras, escáneres, fotocopiadoras y otros muchos periféricos entre sí para que puedas intercambiar datos y órdenes desde los diferentes nodos de la oficina.
Las redes LAN pueden abarcar desde los 200 metros hasta 1 kilómetro de cobertura.
3. Red de área de campus (CAN).

Vale, supongamos que tenemos varios edificios en los que queremos montar una red inalámbrica. ¿Qué pasa si el área de cobertura debe ser mayor a los 1000 metros cuadrados? Y no lo digo sólo por las universidades; las instalaciones de los parques tecnológicos, recintos feriales y naves comerciales pueden superar perfectamente esa superficie.
En tal caso, tenemos las redes CAN. Habría varias redes de área local instaladas en áreas específicas, pero a su vez todas ellas estarían interconectadas, para que se puedan intercambiar datos entre sí de manera rápida, o pueda haber conexión a Internet en todo el campus.
4. Red de área metropolitana (MAN)
Mucho más amplias que las anteriores, abarcan espacios metropolitanos mucho más grandes. Son las que suelen utilizarse cuando las administraciones públicas deciden crear zonas Wifi en grandes espacios. También es toda la infraestructura de cables de un operador de telecomunicaciones para el despliegue de redes de fibra óptica. Una red MAN suele conectar las diversas LAN que hay en un espacio de unos 50 kilómetros.
5. Red de área amplia(WAN)
red WlanSon las que suelen desplegar las empresas proveedoras de Internet para cubrir las necesidades de conexión de redes de una zona muy amplia, como una ciudad o país.
6. Red de área de almacenamiento (SAN)
Es una red propia para las empresas que trabajan con servidores y no quieren perder rendimiento en el tráfico de usuario, ya que manejan una enorme cantidad de datos. Suelen utilizarlo mucho las empresas tecnológicas. En Cisco te cuentan las ventajas de una red SAN.
7. Red de área local virtual(VLAN)
Las redes de las que hablamos normalmente se conectan de forma física. Las redes VLAN se encadenan de forma lógica (mediante protocolos, puertos, etc.), reduciendo el tráfico de red y mejorando la seguridad. Si una empresa tiene varios departamentos y quieres que funcionen con una red separada, la red VLAN.
Comentarios
Publicar un comentario